

AP4.1: Verbundsystem

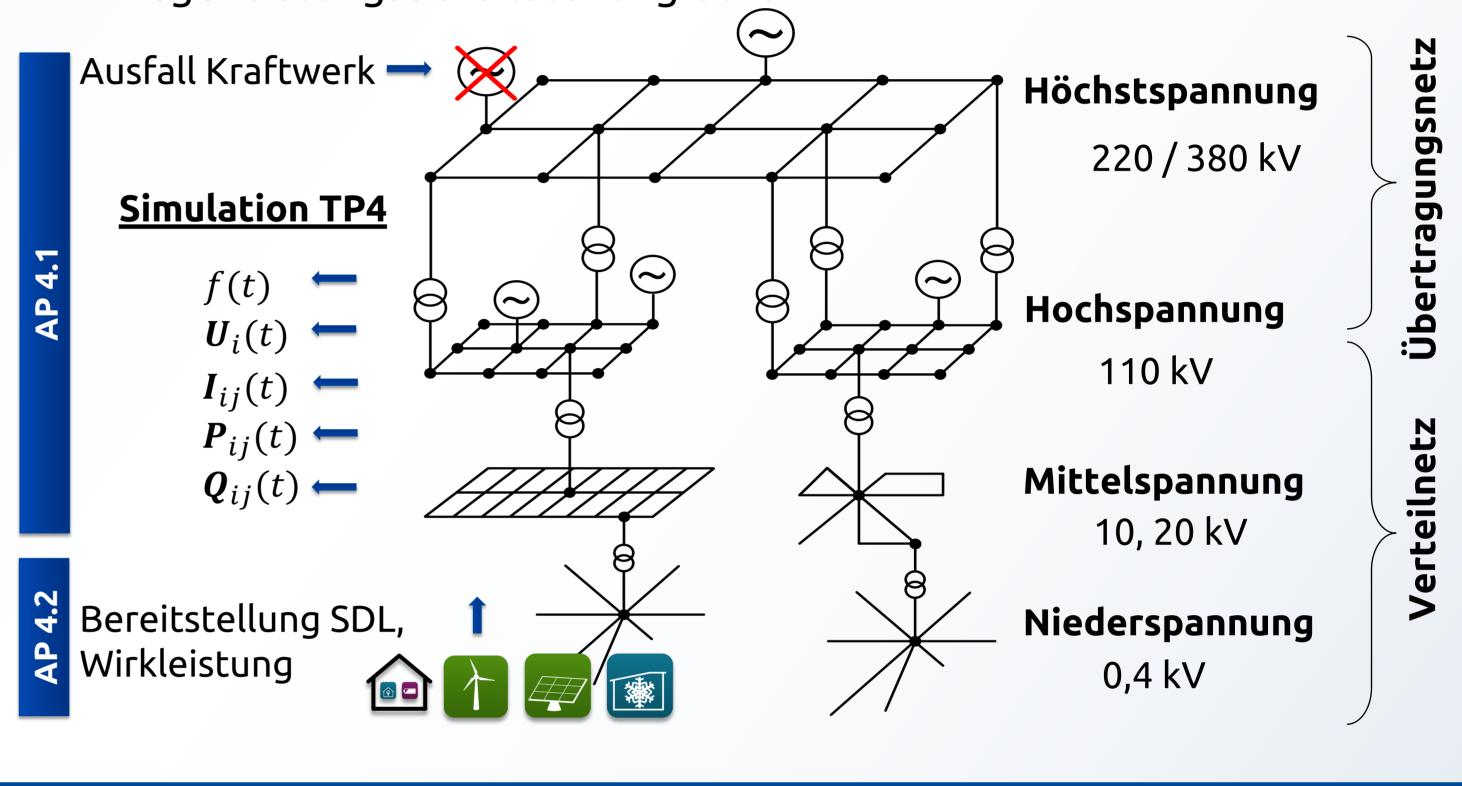
Timo Breithaupt, Steffen Garske Lutz Hofmann, Leibniz Universität Hannover

► Forschungsfrage und Kontext

Spannungsprofil und Leitungsauslastung im Übertragungsnetz

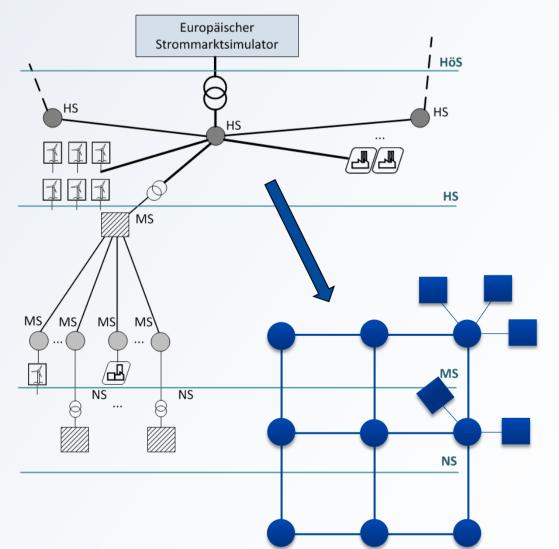
- Stationäre SDL-Bereitstellung durch Verbünde von DEA
 - Auswirkungen auf Netzbetrieb und -Sicherheit im Zukunftsszenario 2030 für Verteil- und Übertragungsnetze
 - ► Einhaltung der Spannungsbänder
 - Bereitstellung von Blindleistung

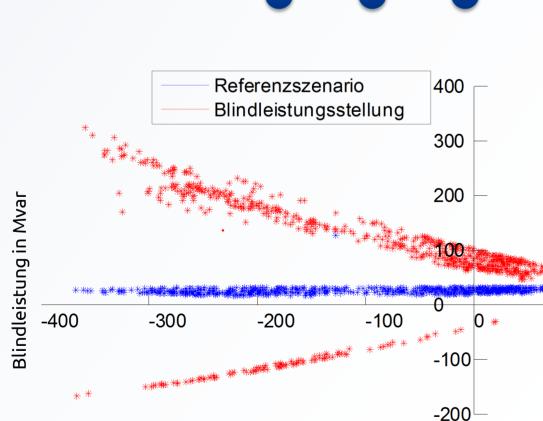
Frequenzverläufe im Störfall -0.002 -0.004 -0.006 -0.006 -0.008 -0.012 -0.014 -0.016 -0.018 -0.018 -0.02 0 5 10 15 20 25 30 35 40 45 50 \[\text{\Delta tin s} \] \[\text{\Delta tin s} \]


Preiszonen im Europäischen

Verbundnetz

- P-f-Regelvorgänge
 - Auswirkungen des Rückganges konventioneller Erzeugung auf die Frequenzausgleichvorgänge nach dem Eintritt von Leistungsungleichgewichten
 - Netztechnische Auswirkungen der Regelleistungsbereitstellung durch DEA
- ► Weiterführende Untersuchungen
 - Wechselwirkungen zwischen Verteilnetz und Übertragungsnetz
 - Auswirkungen auf Netzausbau und Netzbetrieb
 - Grenzen des Zubaus von DEA bzw. zusätzliche Anforderungen an DEA


▶ Methodik


- ▶ Integriertes Spannungsebenen übergreifendes Systemmodell
- ► Europäisches Strommarktmodell und HöS-Netz
- Modellnetze für HS und MS sowie Einbindung aggregierter NS-Netze aus AP4.2
- ► Integration der Marktgebote durch Verbünde
- Simulation stationäres Systemverhalten
 - Leistungsflussanalyse, Spannungshaltung
- ▶ Blindleistungsbereitstellung unterlagerter Netzebenen
- Simulation dynamisches Systemverhalten
 - ► Frequenzstabilitätsanalyse nach Erzeugungsausfällen,
 - Regelleistungsbereitstellung durch DEA

Ergebnisse

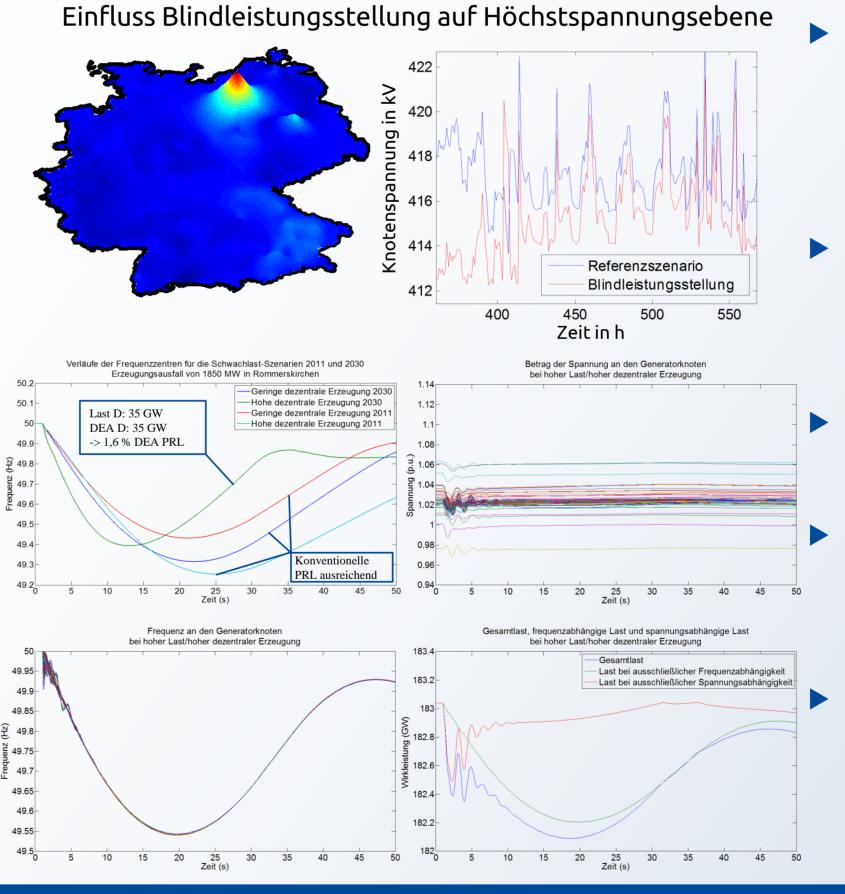
Spannungsebenen übergreifendes Systemmodell von HöS- bis MS-Ebene

Zustandsgleichungen Synchronmaschine

Erregersystem mit Pendeldämpfung

 $\frac{A}{1} + sT_{B}$

 $\begin{bmatrix} \Delta \dot{\omega}_{L} \\ \Delta \dot{\delta}_{L} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \Delta \omega_{L} \\ \Delta \delta_{L} \end{bmatrix} + \begin{bmatrix} k_{m} (T_{m} + T_{e}) \\ 0 \end{bmatrix}$


Betrachtung stationärer Vorgänge

Betrachtung der Szenarien 2011/2030

	2011	2030	2011	2030
Energieträger	inst. Leistung in GW	inst. Leistung in GW	Anteil in % am Stromverbrauch	Anteil in % am Stromverbrauch
Uran	12,0	0	18,8	0
Braunkohle	20,2	13,4	28,9	13,9
Steinkohle	22,9	23,0	17,8	14,9
Öl & Gas	23,9	41,9	3,7	4,4
Sonstige	9,9	14,6	10,8	15,7
Wasser	9,2	15,7	4,2	4,2
Wind	28,3	85,0	11,1	32,3
Sonne	22,3	68,8	4,8	14,4
			Summe EE:	Summe EE:
			ca. 20 %	ca. 60 %

- Hohe Netzauslastungen und Spannungsbandverletzungen
- Bereitstellung von Blindleistung der DEA für sicheren Netzbetrieb notwendig
- Einfluss unterlagerter Netzebenen auf Netzzustand und Blindleistungshaushalt
- Verschiebung der Arbeitspunkte
- Optimierung Blindleistungsbezug/-Abgabe

Zentrale Ergebnisse

- Gezielte Bereitstellung von Blindleistung aus den unterlagerten Netzebenen möglich
- Abhängig von Einspeisung, Ort und Netzzustand
- Frequenzstabilität im Szenario 2030 gewährleistet
- Beschleunigte Primärregelleistung durch DEA nur zu gewissen Zeiten notwendig
- Erhöhung des Spannungseinbruchs durch konstante Leistungseinspeisung der DEA mindert den Frequenzeinbruch

Betrachtung dynamischer Vorgänge

- Untersuchung charakteristischer Zeitpunkte
- Primärregelung konventioneller Kraftwerke gemäß der ENTSO-E-Mindestanforderungen
- Beschleunigte Primärregelung DEA (WEA 5 s, PV 1 s)
- Generatormodell 5. Ordnung
- Erregersystem und Pendeldämpfungsgerät
- Kopplung über Netzgleichungen

Ausblick

- Implementierung alternativer Marktmechanismen zur besseren Marktintegration von DEA
- ► Erweiterung und Verbesserung der Modelle für Kraftwerke, DEA und Lasten (stationär und quasistationär)
- Optimierungsansatz für Blindleistungsaustausch zwischen Übertragungs- und Verteilnetz (siehe Transferprojekt "iQ-Regler")
- Untersuchung der Frequenz- und Spannungsstabilität weiterer zukünftiger Energieversorgungsszenarien

SDL – Systemdienstleistung DEA – Dezentrale Erzeugungsanlage HöS-, HS-, MS-, NS- Spannung – Höchst-, Hoch-, Mittel-, Niederspannung

Netzgleichung

 $\underline{\underline{Y}}_{NN}\underline{\underline{u}}_{N} = \underline{\underline{i}}_{N} = \underline{\underline{i}}_{L} + \underline{\underline{i}}_{G} + \underline{\underline{i}}_{Dez}$

 $U_{\rm T1}U_{\rm RMax} - K_{\rm C}I_{\rm f}$

